

δ^* - closed sets in Topological Spaces

Priyanka D¹, Manikandan K. M²

¹Dr.SNS Rajalakshmi College of Arts and Science, Coimbatore, Tamil Nadu, India

²Head of The Department, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, Tamil Nadu, India

ABSTRACT

Abstract: To introduce a new class of closed sets called δ^* -closed sets and investigate some properties of these sets in topological spaces.

Keywords: δ^* -closed sets, δ - closed sets.

I. INTRODUCTION

Topology is the Mathematical study of the properties that are preserved through deformation, twisting and stretching of objects. A topology on a set X is a collection τ of subsets of X. This can be studied by considering a collection of subsets collect open sets topology developed as a field of study out of geometry & set theory, through analysis of concepts such as space, dimension & transformation. I have introduce and investigate a new class of closed set namely δ^* closed set.

II. BASIC CONCEPTS

Definition 2.1:

Any of the subsets of a topological space x that comprise a topology on x are called open

Definition 2.2:

A subset a of a topological space x is called closed if and only if its complement A^C in X is open (i.e) X-A is open.

Definition 2.3:

Let (X,τ) be topological space. Then a subset δ of

a space (X, τ) is said to be

(i)an ^{δ^* -} Closed set if ^{δ} \supseteq (limit(cl(limit^{θ}(δ))) (ii)an ^{δ^* -} Open set if ^{δ} \subseteq (limit(cl(limit^{θ}(δ)))

Lemma 2.4:

Let ${}^{\delta}$ be a subset of a space(X, $\tau).$ Then the following statements are:

(1)Every θ - Closed set is an δ^* - Closed set.

(2)Every δ^* - Closed set is an θ - Semi closed set.

(3)Every δ^* - Closed set is an δ - Closed set.

Proof:

(i) Let δ be an θ - Closed set Then $\delta = \lim_{\theta \to 0} t_{\theta}(\delta)$ limit $\theta(\delta) \supseteq \lim_{\theta \to 0} t_{\theta}(\delta) \supseteq \delta$ hence $\delta = \lim_{\theta \to 0} t_{\theta}(\delta) \supseteq \operatorname{cl}(\lim_{\theta \to 0} t_{\theta}(\delta))$, then $\delta = \lim_{\theta \to 0} t(\delta)$ $\supseteq \lim_{\theta \to 0} \operatorname{cl}(\lim_{\theta \to 0} t_{\theta}(\delta))$) Thus δ is δ^* - Closed. (ii) obvious from the definition. (iii) let δ be δ^* - Closed. Then $\delta \supseteq \lim_{\theta \to 0} t(t)$ (limit $t_{\theta}(\delta)$) $\supseteq \operatorname{cl}(\lim_{\theta \to 0} t_{\theta}(\delta)) \supseteq \operatorname{cl}(\lim_{\theta \to 0} t_{\theta}(\delta)) \cap 0$

 $(\lim t_{\theta} (\delta))) \supseteq \operatorname{cl} (\lim t_{\theta} (\delta)) \supseteq \operatorname{cl} (\lim t_{\theta} (\delta)) \cap \lim (cl_{\delta}(\delta)).$

Hence δ is an δ^* - Closed set.

Example:

Let X={U,V,W} with topology $\tau = {X,\phi,{U}}{V}{UV}$ Then $\delta = {u,w}$ is an δ - closed set and θ - semi closed set, but it is not δ^* - closed.

Lemma 2.5:

Let (X,τ) be a topological space. Then the following statements are

(1)The finite intersection of δ^* - closed sets is δ^* -closed.

(2) The arbitary union of $\,\delta^*\text{-}$ open set is $\delta^*\text{-}\text{open}.$

Proof:

(1)Let $\{\delta_i : i \in I\}$ be a family of δ^* - closed set. Then $\delta_i \supseteq \operatorname{limit}(\operatorname{cl}(\operatorname{limi} t_{\theta}(\delta_i)))$ for all $i \in I$. Then $\bigcup_{i \in I} \delta_i \supseteq \bigcup_{i \in I} \operatorname{limit}(\operatorname{cl}(\operatorname{limi} t_{\theta}(\delta_i))) \supseteq \operatorname{limit}$

 $(cl(limit_{\theta}(\cup_{i\in I}\delta_i)))).$

Hence $\bigcup_{i \in I} \delta_i$ is δ^* closed.

Lemma 2.6:

For a topological space (X,τ) the family of all δ^* closed set of \cup forms a topology denoted by T_{δ^*} for X.

Proof: It is obvious that X,ϕ are in $\delta^* O(X)$ and we've arbitrary intersection of δ^* - closed set is δ^* - closed.

Let U & V be δ^* - closed set.

Then U \supseteq limit (cl (limi t_{θ} (U))) & V \supseteq limit (cl(lim it_{θ} (V)))

And hence

 $\label{eq:U} U \cup V \supseteq \mbox{limit} \ (\mbox{cl}(\mbox{limit}_{\theta}(U))) \cup \mbox{limit} \ (\mbox{cl} \ (\mbox{limit}_{\theta}(V)))$

 $\supseteq \operatorname{limit}\left(\operatorname{cl}(\operatorname{limit}_{\theta}(\operatorname{U}))\right) \cup \operatorname{cl}\left(\operatorname{limit}_{\theta}\left(\operatorname{V}\right)\right)\right)$

Proof:

(1)By the definition (2) (1)

$$\begin{split} \delta^* - \operatorname{cl}(X|\delta) &= (X|\delta) \cap (\operatorname{cl}(\operatorname{limit}(cl_{\theta}(X|\delta)))) \\ &= (X|\delta) \cap ((X|\operatorname{limit}(\operatorname{cl}(\operatorname{limit}_{\theta}(\delta)))) \\ &= (X|\delta)(\delta \cup \operatorname{limit}(\operatorname{cl}(\operatorname{limit}_{\theta}(\delta)))) \\ &= X|\delta^* - \operatorname{limit}(\delta) \\ (2)\& (3) \text{ Follows from the definitions} \\ (4) By the definition (1) (2) \\ \delta^* - \operatorname{cl}(\delta^* - \operatorname{cl}(U)) &= \operatorname{cl}(\operatorname{limit}(cl_{\theta}(\delta^* - \operatorname{cl}(U)) \\ &= \operatorname{cl}(\operatorname{limit}(cl_{\theta}(U \cap \operatorname{cl}(\operatorname{limit}(cl_{\theta}(\delta)))))) \\ &\supseteq \operatorname{cl}(\operatorname{limit}(cl_{\theta}(U \cap cl_{\theta}(\operatorname{limit}(cl_{\theta}(\delta))))) \\ &\supseteq \operatorname{cl}(\operatorname{limit}(cl_{\theta}(U))) \end{split}$$

 $\supseteq limit \left(cl(limit_{\theta} (U) \cup limit_{\theta} (V)) \right)$

 $\supseteq \operatorname{limit} \left(\operatorname{cl}(\operatorname{limit}_{\theta} \left(U \cap V \right) \right) \right)$

Hence the finite union of δ^* - closed set is δ^* -closed and hence T_{δ^*} is a topology for X.

Definition 2.7:

For a subset $\mbox{ A of }$ a topological space $(x{,}\tau)$

- 1) U is an δ^* closed set iff U = δ^* limit(U)
- 2) U is an δ^* open set iff U = δ^* int(U)

Definition 2.8:

For a subset of topological spaces (X,τ)

1) U is an δ^* -closed set iff U = limit (u)

2) U is an δ^* -open set iff U = δ^* int (u)

Lemma 2.9:

- 1) $\delta^* \operatorname{cl}(X | \delta) = X | \delta^* \operatorname{limit}(\delta)$
- 2) $\delta^* \text{limit}(X | \delta) = X | \delta^* \text{cl}(\delta)$
- 3) If $U \supseteq V$ then $\delta^* cl(A) \supseteq \delta^* cl(V)$ and $\delta^* limit(\delta) \supseteq \delta^* limit(V)$
- 4) δ^* -limit $(\delta^* cl(\delta)) = \delta^* cl(U)$ and $-limit(\delta^* limit(\delta)) = \delta^* limit(U)$
- 5) $\delta^* \operatorname{cl}(U) \cap \delta^* \operatorname{cl}(V) \supseteq \delta^* \operatorname{cl}(A \cap B)$ and $\delta^* \operatorname{limit}(U) \cap \delta^* \operatorname{limit}(V) \supseteq \delta^* \operatorname{limit}(A \cap B)$.
- 6) $\delta^* \operatorname{cl}(U) \cap \delta^* \operatorname{cl}(V) \supseteq \delta^* \operatorname{cl}(A \cup B)$ and $\delta^* \operatorname{limit}(U) \cap \delta^* \operatorname{limit}(V) \supseteq \delta^* \operatorname{limit}(A \cap B)$.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

 $\supseteq \delta^* \operatorname{-cl} (U)$ But $\delta^* \operatorname{-cl} (U) \delta^* \operatorname{-cl} \delta^* \operatorname{-cl} (U)$ Hence $\delta^* \operatorname{-cl} (U) = \delta^* \operatorname{-cl} (\delta^* \operatorname{-cl} (U))$ (5) By the definition (2)(3) $\delta^* \operatorname{-cl} (U) \cap \delta^* \operatorname{-cl} (V) = (U \cap \operatorname{cl} (\operatorname{limit} (cl_{\theta} (U)))) \cap (V \cap \operatorname{cl} (\operatorname{limit} (cl_{\theta} = (U \cap V) \cap (cl(\operatorname{limit} (cl_{\theta} (U)))) \cap \operatorname{cl} (\operatorname{limit} (cl_{\theta} (V))))$ $= (U \cap V) \cap \operatorname{cl} (\operatorname{limit} (cl_{\theta} (A \cap B)))$ $= \delta^* \operatorname{-cl} (A \cap B)$ (6) By the definition (3) (4)

$$\begin{split} \delta^* - \operatorname{limit}(U \cup V) &= (U \cup V) \cup \operatorname{limit} \left(\operatorname{cl}(\operatorname{limit}_{\theta}((U \cup V))) \right) \\ &= (U \cup V) \cup \operatorname{limit} \left(\operatorname{cl}(\operatorname{limit}_{\theta}(U) \left(\operatorname{limit}_{\theta}(V) \right) \right) \\ &\supseteq (U \cup \operatorname{limit} \left(\operatorname{cl}(\operatorname{limit}_{\theta}(U)) \right) \cup (V \cup \operatorname{limit} \left(\operatorname{cl}(\operatorname{limit}_{\theta}(v)) \right)) \\ &= \delta^* - \operatorname{limit}(U) \cup \delta^* - \left(\operatorname{limit}_{\theta}(V) \right) \end{split}$$

III. REFERENCES

- [1]. A.Devika and A.Thilagavathi on M*-OPEN SETS IN TOPOLOGICAL SPACE-volume 4,issue 1-B(2016),1-8
- [2]. M.Caldas, M.Ganster, D.N.Georgion, S.Jafari and T.Noiri On θ-Semi open sets and separation axioms in topological spaces, Carpathian. J. Math,
- [3]. E.Ekici, A note on a open sets and e*open sets, Filomat
- [4]. James R.Munkres-topology second edition book.